
On Animating 2D Velocity Fields

David Kao z and Alex Pang 2

NASA Ames Research Center

2 Computer Science Department, UCSC
davidkao @nas. nasa.gov, pang@cse.ucsc.edu

www.ese.ucsc.edu/researeh/avis/toxflow.html

Abstract. A velocity field, even one that represents a steady state flow. implies

a dynamical system. Animated velocity fields is an important tool in understand-
ing such complex phenomena. This paper looks at a number of techniques that
animate velocity fields and propose two new alternatives. These are texture advec-

tion and streamline cycling. The common theme among these techniques is the
use of advection on some texture to generate a realistic animation of the velocity
field. Texture synthesis and selection for these methods are presented. Strengths
and weaknesses of the techniques are also discussed in conjunctions with several
examples.

Key Words and Phrases: texture advection, streamlines, droplets, color table ani-

mation, LIC, texture mapping, flow field.

1 INTRODUCTION

Animation best captures the dynamical properties of velocity fields. We are reminded

once again in the recent papers of Stam [7] and Witting [11], where both papers use

animation to show the complex nature of a flow field. In these papers, the authors effec-

tively used texture advection as the primary mechanism to depict the results of their flow

simulation thereby achieving effects such as swirling and mixing of fluids. While these

papers may have met their goals for aesthetic visual effects, the basic technique requires

modifications to make it suitable for scientific visualization purposes. Specifically, how
does one handle texture advection beyond the bounds of the flow field? Likewise, how

does one handle texture advection for critical points such as sources and sinks, etc. in
the flow field?

This paper reviews several existing techniques for animating velocity field from

the scientific visualization community (Section 2). We then propose two alternative

methods (Sections 3 and 4) that draw upon the strengths of existing methods to provide

realistic depictions of the behavior of the velocity field.

2 RELATED WORK

There are several excellent work on the use of animation to aid in the understanding of

flow fields. We review a number of approaches here.

HinandPost[31usedparticlemotionanimationtodepictaturbulentflowfield.The
flowfieldisdecomposedintoaconvectiveandaturbulentcomponent.Duringeachstep
oftheanimation,thepathofaparticleisstochasticallyperturbedtoproducearealistic
turbulentfloweffect.

Severalanimationtechniquesuseeithercolortableanimationorcyclingoftexture
maps.VanGelderandWilhelms[2]usedcolortableanimationtoanimatestreamlines
ina3Dflowfield.Streamlinesarerenderedopaquelyusingz-bufferwhilecoloreddots
"move"alongeachstreamlinecreatingtheillusionofmotion.YamromandMartin[12]
usedavariationofthisapproachbyfirstrenderinga3Dflowfieldashedgehogs.Then
aseriesof 16IDcyclingtexturepatternofvaryingalphavaluesisusedtoanimatethe
hedgehogs.Noparticleintegrationstepisrequiredin theirmethod.JobardandLefer
[4] introducedtheideaofamotionmapthatstoresthepathandvelocitymagnitudeof
streamlinesinasteadyflowfield.Foranimation,theycreateasequenceof colortable
indicesforeachstreamline.Animationiscarriedouteitherbythetraditionalcolortable
animationorbycyclingofthetextures,wherethecolorindexesareshifted.Fortextures,
highfrequencyrandomtexturesaregeneratedandusedonstreamlinesproducingeffects
similartoanimatedlineintegralconvolution(LIC)techniques.

LICisanotherpopularmethodforvisualizingflowfields.Oneoftheenhancements
isanimatedLICtobetterpresentthedynamicnatureof flowfields.Again,anumber
of workin thisareaissummarizedhere.Wegenkittletal.[10]describedorientedLIC
(OLIC),a sparserLICversionwhereorientationanddirectionof theflowfieldare
encodedwitharamplikeconvolutionkernel.Twodifferentapproachesforanimating
OLICweresuggested:(a)phaseshiftofconvolutionkernelinconsecutiveframesand
(b)color table animation.

Another approach with similar effect is with animated spot noise [8] where spots

are placed randomly in a 2D flow field and assigned a random phase. During anima-

tion, they appear to glow, move a short distance, then fade. In order to handle variable

speed animation, Forssell and Cohen [1] proposed that a different convolution kernel is

used for each pixel. Specifically, the convolution kernel has a phase shift proportional to

the corresponding grid cell's physical velocity magnitude. Shen and Kao [6] extended
animated LIC to Unsteady Flow LIC (UFLIC), a time-accurate method capturing un-

steady flow fields. Another variation is with Pseudo-LIC (PLIC) [9] where LIC-like

images are generated using textured streamlines. Variable speed animation is achieved

by varying the cycling frequency of textures.

The predominant idea of animating flow fields seem to be either with color table
animation or texture animation. In fact, one of the earlier work is by Max et al. [5]
where 3D textures coordinates were advected in a climate simulation model. Two 3D

textures were linearly combined over time and then passed through a transparency filter

so that texture distortions and overlapping textures were minimized.

The work presented in this paper extends animation of flow fields in two ways.
First, we examine the texture advection approach used by Max and modify it to better

support boundary conditions and critical points in the flow, Second, we look at the

texture cycling along a streamline and show how a continuous animation of a steady
flow can be achieved with a finite number of integration steps.

3 TEXTURE ADVECTION

The idea behind this approach is to modify the texture image such that it appears to

get distorted by some underlying flow field. This is best carried out by advecting the
texture coordinates of the image. That is, each texel is treated as a particle and integrated

backwards in time for some number of integration steps L. Backward integration is

used instead of forward integration. For each texel, we calculate which texel(s) along

a streamline contributed to it. As time progresses, texels contributing to a particular

texel would have come from a farther distance (integration step) away. By incrementally

increasing L and saving the output image at each time step, we can generate an animated

flow field showing how the input texture image is distorted by the flow field.

3.1 Boundary Conditions

Although the method above seems easy and straightforward, a couple of issues arises

when the integration reaches the boundary or a critical point. We will discuss the bound-

ary case situation first. Since the particle is advected backward in time, depending on

the original seed location and the flow direction, it is most likely that after some time

period, a particle will reach the grid boundary. This prompts the question: what texel

value do we assign when a particle reaches a boundary? A simple and naive solution
would be to terminate the particle at the boundary and use the color of the texel at the

boundary where the particle terminated. We refer to this approach as the constant color

boundary method. The outcome of this strategy will be that after some time frames,

the boundary color is propagated into the image. Since the boundary color is constant,
we will see a corresponding constant color streaks coming from the boundaries of the

image (See Figure l, particularly the regions near the upper left and lower right). Even-

tually, the image will consist of many constant texture color regions. While this may
be undesirable for most situations, it does have some visualization value. Specifically,

it identifies regions in the flow that are not affected by the boundaries at all and the re-

gions of flows that become time-invariant. To avoid "freezing" the image with constant

texture regions, these boundary texels must somehow be changed or made dependent

on integration time.
We now consider the periodic boundary condition. If the input texture is peri-

odic, then we displace the particle when it reaches the boundary i.e. if x < 0 then
x+ = max_z and if x > max_,Tz then x% = max_.v. This check is also performed for

the y coordinate. Assume that the input texture is periodic, imposing periodic boundary

might, at first glance, appear to solve the problem. However, this alone is not sufficient.

The problem really is that once a particle goes outside the boundary of the flow, there's
no information available for carrying out the backward integration. Hence, it would al-

ways be drawing from the same texel value. Figure 2 shows the effects of imposing a

periodic boundary condition. To combat this problem, the following approach is used.

A procedurally defined 3D texture is used such that when a particle exits the boundary
of the flow, integration is stopped. When an animation calls for time steps beyond this

point, texels values along the depth of the 3D textures are used. The depth is determine

by the number of time steps left when the particle reaches the boundary. The color of
the texture to use is a function of this depth value. By guaranteeing that the boundary

Fig. 1. Effect of using constant colors once integration step reaches the boundary. Notice how the

colors at the boundaries get streaked out over the image.

Fig. 2. Effect of using periodic boundary conditions. Similar problem as constant boundary con-

ditions but new patterns seem to feed in from the boundaries although they are not very coherent.

Fig. 3. Effect of using a 3D checkerboard texture pattern. Coherent checkerboard pattern appear

to feed in from the boundaries into the image•

Fig.4. A LIC image that depicts the dynamic vortices flow field used in the previous figures.

textures are different as one goes through the depth of the 3D texture, a dynamic contin-

uous feed effect is achieved. Figure 3 illustrates this approach when a 3D checkerboard

texture pattern is used. Note that adjusting the scales and frequency of the checkerboard

along the depth of the 3D texture affects the quality of the resulting animation.

3.2 Critical Points

The problem of what texture pattern to feed into the image also occurs when a particle

reaches a critical point that is source or repelling spiral i.e. where the flow emanates

from the critical point. Using the standard advection of texture coordinates with con-
stant color boundary condition will produce an image like Figure 5. What is happening

here is that particles around the region of influence of the source are backward inte-

grated into the same point - the source critical point. So, whatever texel value happen

to be at that point gets propagated out through the source region. A more realistic effect

would have been to see new texture patterns flowing out of the source point. Again, we

use the 3D texture approach so that if we end up at the same location during a backward

integration step, (i.e. at a source or repelling spiral), the texel value assigned is the next

one in depth. This is illustrated in Figure 6.

This texture advection is image based, and the particle advection is performed for

each texel. Basically, there is a one to one mapping of the output image and the input

image. For each texel in the output image, there is a corresponding texel in the input

image.

The computational time of this approach grows linearly as the number of time steps

increases. During the initial time step, no integration is performed to show the initial

input image. At the second time step, the texels are advected to the next time step.

Hence, at time n, the particles would need to be advected by n time steps. However, it is

easy to improve the computational time by saving the current positions of the particles

at the current time step and then continue the advection to the next time step.

This approach does not require large memory overhead because the integration are
performed texel by texel. The only information saved are the resulting output image

obtained from the particle integration.

4 STREAMLINE CYCLING

As pointed out, a weakness of the texture advection approach, even with the 3D textures

for feeding new textures at boundaries and source and repelling spiral critical points,

is the lack of coherency of new textures. Another potential drawback is the sensitivity

of the visual effect to the 3D texture used. That is, different textures can potentially
produce different visual effects even on the same flow field. This section discusses

another flow field animation approach. This approach was motivated by the question

of how to feed textures into the image when a particle reaches a boundary or a source

or repelling spiral critical point. Instead of creating new textures, why not reuse the

existing textures in the streamline'? The basic idea is to first intersect streamlines with

the underlying texture in the image, those textures are then cycled for each streamline.

Because the texture features (e.g. a region of the texture such as a part of a checkerboard

Fig.5.Texel value at the critical source point (lower right) is replicated over time. Eventually the

region of influence of the source point becomes homogeneously white.

Fig.6. Effect of using a 3D checkerboard texture pattern. New patterns seem to continuously

appear from the source.

Fig. 7. A LIC image that depicts the source and sink critical points in the flow which was used as
as input for the previous two figures.

texture) span many streamlines, the movement of the textures are very prominent. Using

this approach, flow about the source and sink critical points are clearly depicted.

Here is how the algorithm works. For each texel, the particle is integrated forward

and backward in time. The particle is terminated v,hen it (a) reaches _he boundary, (b)

reaches a source or repelling spiral critical point, or (c) has exceeded the maximum

integration steps allowed. While the particle is being integrated along the flow field, the

color intensity (RGB) of the texel that it traversed through is saved. For animation, the

saved color intensities along the streamline is cycled by a fixed amount in each time

step, thus producing an animated image. This is illustrated in Figures 8 and 9 using

different texture images. For simplicity, if the streamline has A, B, C, D, and E color

intensities and we shift the streamline by one position each time, then we will get B, C,

D, E, A in the second time step and C, D, E, A. B in the third time step, and so on. The
streamline integration and shifting are performed in texel space. We save the morphed

image from each time step to a file and then playback the saved images for animation.

Fig. $. A sequence of time steps (at time steps 5, 10and 30) from using streamline cycling. The
flow about the source is clearly shown.

Inourimplementation,weseedthestreamlineseveryother3texels.Furthermore,
theseedsarejitteredtoavoidartifactsfromuniformsampling.Wefoundthisseedden-
sitytendsto giveusnearfull coverageof theimage.Foreachstreamline,thetexel
positions(i,j)andthetexelcolor(R,G,B)valuesarestored.The maximum length of
the streamline is set to 1,000. For the test data that we used, only a small fraction of

the streamlines reach this maximum. Hence, the maximum storage requirement per

stream line is 1,000"(4+3)= 7KB, where (i,j) is 2 shorts and (R,G,B) is 3 bytes. For

a 400x400 image which has seeding at every other 3 texels, it would require approx-

imately 133x133x7KB, or 123.8MB. Note that this is the size of the entire animation
as well because we just need to cycle through the texture for each streamline to do the

animation.

Fig. 9. Streamline cycling using the same sequence of time steps (at time step 5, 10 and 30) as
Figure 8 but using a different input image. The texture image is that of galaxies. Arbitrary texture
images may be used.

In this approach we did not deal with the situation when multiple streamlines tra-
verse through the same texel. The main reason why this situation is not considered is

due to the extra memory requirement that is need for normalization - store the sum

of the texel color from the streamlines that pass through and the count of the number

of streamlines that pass through each texel. Furthermore, additional computation is re-

quired to average the texel colors. A related consequence is that because streamlines are

calculated independently, textures being cycled on each streamline may not look coher-

ent particularly when coming out of a critical source point. This is an area for further

improvement.

There are several advantages to the streamline texture cycling approach. One nice

feature is that it is pretty much automated, i.e. the user does not need to specify any

parameters besides the input flow field, an input image, and the number of time steps.
Based on these information, the program produces an animation that morphs the in-

put image over time to depict the flow field. Another advantage is that unlike the tex-

ture advection approach, integration does not continue indefinitely with the animation

time. Because we are cycling the textures on the streamlines, the longest integration

required would be that of the longest streamline in the flow field. Finally, another ad-

vantage is that arbitrary texture images may be used. (The video illustrates this method
with a checkerboard and a galaxy image as textures). When specially designed textures

are used as in [4,9], animated LIC-like images can be produced. Likewise, the same

techniquecanbeusedtoproduceanimationssimilartoanimateddroplets(streamlets)
whereinkdropletsaresmearedtorevealfloworientationandanimatedto showthe
flowdirection.Thedropletsareapproximatedbysmalldiskswithvaryingintensities.
Animationof thesedropletsisdonebyeitherphaseshiftingoftheconvolutionkernel
inconsecutiveframesorbycolortableanimation.Thesameeffectcanbeeasily sim-

ulated using streamline cycling. The key is to start with an input texture that consists

of scattered droplets. By cycling through the texture along each streamline, the droplets

get smeared and oriented properly and move in the direction of the flow when animated,

Figure 10 illustrates how this approach works.

Fig. 10. Animated droplets can be achieved using the streamline cycling approach together with
an initial texture image of random spots. This sequence shows several four frames from the data
set used in Figures I to Figure 4.

We found the streamline cycling approach to be most appropriate for depicting the

flow about the source and sink critical points in the flow field. The resulting animation

gives a striking appearance of the texture been swallowed near the sink critical point
and the bursting of texture from the source critical points. This dynamic depiction of

the flow is not possible with any static flow depiction including those generated from

the LIC algorithm

5 SUMMARY

We have presented how two easy to implement and use flow licld animation techniques

can be modified to become useful t'c_rscientific visualizati4m applications. In particular.

the methods presented provided mechanisms for feeding new textures into the anima-

tion both at boundary regions as well as critical points such as sources and repelling

spirals in the flow field. Conventional particle trace animation techniques usually seg-

ment the particle traces into fragments and then move the fragments along the particle

path. Our techniques differ from the conventional techniques in that we morph the given

texture image to help reveal the dynamics in the flow and we propose solutions on how

to feed textures from the flow boundaries and the critical points. There are still several

areas for improvements. One area is to extend our approach for 3D velocity flow fields.

This would involve using a 3D input texture pattern and it would be best generated pro-

cedurally. Currently, our 3D texture boundary approach only generate checkerboard like

patterns for feeding into the flow field. We also plan to include other texture patterns.

ACKNOWLEDGMENTS

We would like to thank David Kenwright for discussions on cross flow coordinates. We

would also like to thank the members of the Advanced Visualization and Interactive

Systems laboratory at UC, Santa Cruz for their feedback and suggestions. This project

is supported by NASA grant NCC2-5281, LLNL Agreement No. B347879 under DOE

Contract No. W-7405-ENG-48, DARPA grant N66001-97-8900, and NSF grant ACI-

9619020.

References

[I] L. K. Forssell and S. D. Cohen. Using line integral convolution for flow visualization:

curvilinear grids, variable-speed animation, and unsteady flows. IEEE Transactions on

Visualization and Computer Graphics, 1(2): 133-141, June 1995.

[21 Allen Van Gelder and Jane Wilhelms. Interactive visualization of flow fields. In Proceedings

of Workshop on Volume Visualization, pages 47- 54. ACM, 1992.

[3] A.J.S. Hin and F.H. Post. Visualization of turbulent flow with particles. In Proceedings of

Visualization 93, pages 46-52. IEEE, 1993.

[4] B. Jobard and W. Lefer. The motion map: Efficient computation of steady flow animations.

In Proceedings of Visualization 97, pages 323 -328. IEEE, October 1997.

[51 N. Max, R. Crawfis, and D. Williams. Visualizing wind velocities by advecting cloud tex-

tures. In Proceedings: Visualization '92, pages 179 - 184. IEEE Computer Society, 1992.

[61 Han-Wei Shen and David L. Kao. A new line integral convolution algorithm for visualiz-

ing time-varying flow fields. IEEE Transactions on Visualization and Computer Graphics,

4(2):98--108. April-June 1998.

[7] Jos Stare. Stable fluids. In Computer Graphics, pages 121-128. Los Angeles, Ca., August

1999. ACM Siggraph Conference Proceedings.

[8] J. J. van Wijk. Spot Noise: Texture synthesis for data visualization. Computer Graphics,

25(4):309 - 318, 1991.

[9] Vivek Verma, David Kao. and Alex Pang. PLIC: Bridging the gap between streamlines and

LIC. In Proceedings of Visualization '99, pages 341 - 348. October 1999.

[10] R. Wegenkittl. E. Groller, and W. Purgathofer. Animating flow fields: rendering of ori-

ented line integral convolution. In Computer Animation '97, pages 15-2 I. IEEE Computer

Society Press, June 1997.

[! I] Patrick Witting. Computational fluid dynamics in a traditional animation environment. In

Computer Graphics, pages 129-136, Los Angeles, Ca., August 1999. ACM Siggraph Con-

ference Proceedings.

[12] B. Yamrom and K.M. Martin. Vector field animation with texture maps. IEEE Computer

Graphics and Applications, 15(2):22-24, March 1995.

